exa-observability by jeremylongshore
DevOps
945 Stars
114 Forks
Updated Jan 11, 2026, 10:30 PM
Why Use This
This skill provides specialized capabilities for jeremylongshore's codebase.
Use Cases
- Developing new features in the jeremylongshore repository
- Refactoring existing code to follow jeremylongshore standards
- Understanding and working with jeremylongshore's codebase structure
Skill Snapshot
Auto scan of skill assets. Informational only.
Valid SKILL.md
Checks against SKILL.md specification
Source & Community
Repository claude-code-plugins-plus-skills
Skill Version
main
Community
945 114
Updated At Jan 11, 2026, 10:30 PM
Skill Stats
SKILL.md 250 Lines
Total Files 1
Total Size 0 B
License MIT
---
name: exa-observability
description: |
Set up comprehensive observability for Exa integrations with metrics, traces, and alerts.
Use when implementing monitoring for Exa operations, setting up dashboards,
or configuring alerting for Exa integration health.
Trigger with phrases like "exa monitoring", "exa metrics",
"exa observability", "monitor exa", "exa alerts", "exa tracing".
allowed-tools: Read, Write, Edit
version: 1.0.0
license: MIT
author: Jeremy Longshore <jeremy@intentsolutions.io>
---
# Exa Observability
## Overview
Set up comprehensive observability for Exa integrations.
## Prerequisites
- Prometheus or compatible metrics backend
- OpenTelemetry SDK installed
- Grafana or similar dashboarding tool
- AlertManager configured
## Metrics Collection
### Key Metrics
| Metric | Type | Description |
|--------|------|-------------|
| `exa_requests_total` | Counter | Total API requests |
| `exa_request_duration_seconds` | Histogram | Request latency |
| `exa_errors_total` | Counter | Error count by type |
| `exa_rate_limit_remaining` | Gauge | Rate limit headroom |
### Prometheus Metrics
```typescript
import { Registry, Counter, Histogram, Gauge } from 'prom-client';
const registry = new Registry();
const requestCounter = new Counter({
name: 'exa_requests_total',
help: 'Total Exa API requests',
labelNames: ['method', 'status'],
registers: [registry],
});
const requestDuration = new Histogram({
name: 'exa_request_duration_seconds',
help: 'Exa request duration',
labelNames: ['method'],
buckets: [0.05, 0.1, 0.25, 0.5, 1, 2.5, 5],
registers: [registry],
});
const errorCounter = new Counter({
name: 'exa_errors_total',
help: 'Exa errors by type',
labelNames: ['error_type'],
registers: [registry],
});
```
### Instrumented Client
```typescript
async function instrumentedRequest<T>(
method: string,
operation: () => Promise<T>
): Promise<T> {
const timer = requestDuration.startTimer({ method });
try {
const result = await operation();
requestCounter.inc({ method, status: 'success' });
return result;
} catch (error: any) {
requestCounter.inc({ method, status: 'error' });
errorCounter.inc({ error_type: error.code || 'unknown' });
throw error;
} finally {
timer();
}
}
```
## Distributed Tracing
### OpenTelemetry Setup
```typescript
import { trace, SpanStatusCode } from '@opentelemetry/api';
const tracer = trace.getTracer('exa-client');
async function tracedExaCall<T>(
operationName: string,
operation: () => Promise<T>
): Promise<T> {
return tracer.startActiveSpan(`exa.${operationName}`, async (span) => {
try {
const result = await operation();
span.setStatus({ code: SpanStatusCode.OK });
return result;
} catch (error: any) {
span.setStatus({ code: SpanStatusCode.ERROR, message: error.message });
span.recordException(error);
throw error;
} finally {
span.end();
}
});
}
```
## Logging Strategy
### Structured Logging
```typescript
import pino from 'pino';
const logger = pino({
name: 'exa',
level: process.env.LOG_LEVEL || 'info',
});
function logExaOperation(
operation: string,
data: Record<string, any>,
duration: number
) {
logger.info({
service: 'exa',
operation,
duration_ms: duration,
...data,
});
}
```
## Alert Configuration
### Prometheus AlertManager Rules
```yaml
# exa_alerts.yaml
groups:
- name: exa_alerts
rules:
- alert: ExaHighErrorRate
expr: |
rate(exa_errors_total[5m]) /
rate(exa_requests_total[5m]) > 0.05
for: 5m
labels:
severity: warning
annotations:
summary: "Exa error rate > 5%"
- alert: ExaHighLatency
expr: |
histogram_quantile(0.95,
rate(exa_request_duration_seconds_bucket[5m])
) > 2
for: 5m
labels:
severity: warning
annotations:
summary: "Exa P95 latency > 2s"
- alert: ExaDown
expr: up{job="exa"} == 0
for: 1m
labels:
severity: critical
annotations:
summary: "Exa integration is down"
```
## Dashboard
### Grafana Panel Queries
```json
{
"panels": [
{
"title": "Exa Request Rate",
"targets": [{
"expr": "rate(exa_requests_total[5m])"
}]
},
{
"title": "Exa Latency P50/P95/P99",
"targets": [{
"expr": "histogram_quantile(0.5, rate(exa_request_duration_seconds_bucket[5m]))"
}]
}
]
}
```
## Instructions
### Step 1: Set Up Metrics Collection
Implement Prometheus counters, histograms, and gauges for key operations.
### Step 2: Add Distributed Tracing
Integrate OpenTelemetry for end-to-end request tracing.
### Step 3: Configure Structured Logging
Set up JSON logging with consistent field names.
### Step 4: Create Alert Rules
Define Prometheus alerting rules for error rates and latency.
## Output
- Metrics collection enabled
- Distributed tracing configured
- Structured logging implemented
- Alert rules deployed
## Error Handling
| Issue | Cause | Solution |
|-------|-------|----------|
| Missing metrics | No instrumentation | Wrap client calls |
| Trace gaps | Missing propagation | Check context headers |
| Alert storms | Wrong thresholds | Tune alert rules |
| High cardinality | Too many labels | Reduce label values |
## Examples
### Quick Metrics Endpoint
```typescript
app.get('/metrics', async (req, res) => {
res.set('Content-Type', registry.contentType);
res.send(await registry.metrics());
});
```
## Resources
- [Prometheus Best Practices](https://prometheus.io/docs/practices/naming/)
- [OpenTelemetry Documentation](https://opentelemetry.io/docs/)
- [Exa Observability Guide](https://docs.exa.com/observability)
## Next Steps
For incident response, see `exa-incident-runbook`. Name Size