long-context by davila7
Extend context windows of transformer models using RoPE, YaRN, ALiBi, and position interpolation techniques. Use when processing long documents (32k-128k+ tokens), extending pre-trained models beyond original context limits, or implementing efficient positional encodings. Covers rotary embeddings, attention biases, interpolation methods, and extrapolation strategies for LLMs.
Coding
15.7K Stars
1.4K Forks
Updated Jan 12, 2026, 05:31 AM
Why Use This
This skill provides specialized capabilities for davila7's codebase.
Use Cases
- Developing new features in the davila7 repository
- Refactoring existing code to follow davila7 standards
- Understanding and working with davila7's codebase structure
Skill Snapshot
Auto scan of skill assets. Informational only.
Valid SKILL.md
Checks against SKILL.md specification
Source & Community
Repository claude-code-templates
Skill Version
main
Community
15.7K 1.4K
Updated At Jan 12, 2026, 05:31 AM
Skill Stats
SKILL.md 537 Lines
Total Files 1
Total Size 0 B
License MIT
---
name: long-context
description: Extend context windows of transformer models using RoPE, YaRN, ALiBi, and position interpolation techniques. Use when processing long documents (32k-128k+ tokens), extending pre-trained models beyond original context limits, or implementing efficient positional encodings. Covers rotary embeddings, attention biases, interpolation methods, and extrapolation strategies for LLMs.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Emerging Techniques, Long Context, RoPE, YaRN, ALiBi, Position Interpolation, Extended Context, Rotary Embeddings, Attention Bias, Context Extension, Positional Encoding]
dependencies: [transformers, torch, flash-attn]
---
# Long Context: Extending Transformer Context Windows
## When to Use This Skill
Use Long Context techniques when you need to:
- **Process long documents** (32k, 64k, 128k+ tokens) with transformer models
- **Extend context windows** of pre-trained models (LLaMA, Mistral, etc.)
- **Implement efficient positional encodings** (RoPE, ALiBi)
- **Train models** with length extrapolation capabilities
- **Deploy models** that handle variable-length inputs efficiently
- **Fine-tune** existing models for longer contexts with minimal compute
**Key Techniques**: RoPE (Rotary Position Embeddings), YaRN, ALiBi (Attention with Linear Biases), Position Interpolation
**Papers**: RoFormer (arXiv 2104.09864), YaRN (arXiv 2309.00071), ALiBi (arXiv 2108.12409), Position Interpolation (arXiv 2306.15595)
## Installation
```bash
# HuggingFace Transformers (includes RoPE, YaRN support)
pip install transformers torch
# For custom implementations
pip install einops # Tensor operations
pip install rotary-embedding-torch # Standalone RoPE
# Optional: FlashAttention for efficiency
pip install flash-attn --no-build-isolation
```
## Quick Start
### RoPE (Rotary Position Embeddings)
```python
import torch
import torch.nn as nn
class RotaryEmbedding(nn.Module):
"""Rotary Position Embeddings (RoPE)."""
def __init__(self, dim, max_seq_len=8192, base=10000):
super().__init__()
# Compute inverse frequencies
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.max_seq_len = max_seq_len
def forward(self, seq_len, device):
# Position indices
t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
# Compute frequencies
freqs = torch.outer(t, self.inv_freq) # (seq_len, dim/2)
# Compute sin and cos
emb = torch.cat((freqs, freqs), dim=-1) # (seq_len, dim)
return emb.cos(), emb.sin()
def rotate_half(x):
"""Rotate half the hidden dimensions."""
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin):
"""Apply rotary embeddings to queries and keys."""
# q, k shape: (batch, heads, seq_len, dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# Usage
rope = RotaryEmbedding(dim=64, max_seq_len=8192)
cos, sin = rope(seq_len=2048, device='cuda')
# In attention layer
q_rotated, k_rotated = apply_rotary_pos_emb(query, key, cos, sin)
```
### ALiBi (Attention with Linear Biases)
```python
def get_alibi_slopes(num_heads):
"""Get ALiBi slope values for each attention head."""
def get_slopes_power_of_2(n):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
ratio = start
return [start * (ratio ** i) for i in range(n)]
if math.log2(num_heads).is_integer():
return get_slopes_power_of_2(num_heads)
else:
# Closest power of 2
closest_power = 2 ** math.floor(math.log2(num_heads))
slopes = get_slopes_power_of_2(closest_power)
# Add extra slopes
extra = get_slopes_power_of_2(2 * closest_power)
slopes.extend(extra[0::2][:num_heads - closest_power])
return slopes
def create_alibi_bias(seq_len, num_heads):
"""Create ALiBi attention bias."""
# Distance matrix
context_position = torch.arange(seq_len)
memory_position = torch.arange(seq_len)
relative_position = memory_position[None, :] - context_position[:, None]
# Get slopes
slopes = torch.tensor(get_alibi_slopes(num_heads))
# Apply slopes to distances
alibi = slopes[:, None, None] * relative_position[None, :, :]
return alibi # (num_heads, seq_len, seq_len)
# Usage in attention
num_heads = 8
seq_len = 2048
alibi_bias = create_alibi_bias(seq_len, num_heads).to('cuda')
# Add bias to attention scores
# attn_scores shape: (batch, num_heads, seq_len, seq_len)
attn_scores = attn_scores + alibi_bias
attn_weights = torch.softmax(attn_scores, dim=-1)
```
### Position Interpolation for LLaMA
```python
from transformers import LlamaForCausalLM, LlamaTokenizer
# Original context: 2048 tokens
model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
# Extend to 32k with position interpolation
# Modify RoPE base frequency
model.config.rope_scaling = {
"type": "linear",
"factor": 16.0 # 2048 * 16 = 32768
}
# Or use dynamic scaling
model.config.rope_scaling = {
"type": "dynamic",
"factor": 16.0
}
# Fine-tune with long documents (minimal steps needed)
# Position interpolation works out-of-the-box after this config change
```
## Core Concepts
### 1. RoPE (Rotary Position Embeddings)
**How it works:**
- Encodes absolute position via rotation matrix
- Provides relative position dependency in attention
- Enables length extrapolation
**Mathematical formulation:**
```
q_m = (W_q * x_m) * e^(imθ)
k_n = (W_k * x_n) * e^(inθ)
where θ_j = base^(-2j/d) for j ∈ [0, d/2)
```
**Advantages:**
- Decaying inter-token dependency with distance
- Compatible with linear attention
- Better extrapolation than absolute position encodings
### 2. YaRN (Yet another RoPE extensioN)
**Key innovation:**
- NTK-aware interpolation (Neural Tangent Kernel)
- Attention temperature scaling
- Efficient context extension (10× less tokens vs baselines)
**Parameters:**
```python
# YaRN configuration
yarn_config = {
"scale": 16, # Extension factor
"original_max_position": 2048, # Base context
"extrapolation_factor": 1.0, # NTK parameter
"attn_factor": 1.0, # Attention scaling
"beta_fast": 32, # High-frequency scale
"beta_slow": 1, # Low-frequency scale
}
```
**Performance:**
- Extends LLaMA to 128k tokens
- 2.5× less training steps than baselines
- State-of-the-art context window extension
### 3. ALiBi (Attention with Linear Biases)
**Core idea:**
- No positional embeddings added to tokens
- Apply distance penalty directly to attention scores
- Bias proportional to key-query distance
**Formula:**
```
attention_bias[i, j] = -m * |i - j|
where m = slope for each attention head
```
**Advantages:**
- 11% faster training vs sinusoidal embeddings
- 11% less memory usage
- Strong length extrapolation (train 1k, test 2k+)
- Inductive bias towards recency
### 4. Position Interpolation
**Technique:**
- Linearly down-scale position indices
- Interpolate within trained range (vs extrapolate beyond)
- Minimal fine-tuning required
**Formula:**
```
# Original: position indices [0, 1, 2, ..., L]
# Extended: position indices [0, 0.5, 1.0, ..., L/2]
# (for 2× extension)
scaled_position[i] = i / extension_factor
```
**Results:**
- LLaMA 7B-65B extended to 32k tokens
- 1000 fine-tuning steps sufficient
- 600× better stability than extrapolation
## Method Comparison
| Method | Max Context | Training Needed | Memory | Extrapolation | Best For |
|--------|-------------|-----------------|--------|---------------|----------|
| **RoPE** | 8k-32k | Full pre-training | Moderate | Good | New models |
| **YaRN** | 32k-128k | Minimal (10× efficient) | Moderate | Excellent | Extending existing models |
| **ALiBi** | Unlimited | Full pre-training | Low (-11%) | Excellent | Training from scratch |
| **Position Interpolation** | 32k+ | Minimal (1k steps) | Moderate | Poor (by design) | Quick extension |
## Implementation Patterns
### HuggingFace Transformers Integration
```python
from transformers import AutoModelForCausalLM, AutoConfig
# RoPE with YaRN scaling
config = AutoConfig.from_pretrained("mistralai/Mistral-7B-v0.1")
config.rope_scaling = {
"type": "yarn",
"factor": 8.0,
"original_max_position_embeddings": 8192,
"attention_factor": 1.0
}
model = AutoModelForCausalLM.from_config(config)
# Position interpolation (simpler)
config.rope_scaling = {
"type": "linear",
"factor": 4.0
}
# Dynamic scaling (adjusts based on input length)
config.rope_scaling = {
"type": "dynamic",
"factor": 8.0
}
```
### Custom RoPE Implementation
```python
class LongContextAttention(nn.Module):
"""Multi-head attention with RoPE."""
def __init__(self, hidden_size, num_heads, max_seq_len=32768):
super().__init__()
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads
# Q, K, V projections
self.q_proj = nn.Linear(hidden_size, hidden_size)
self.k_proj = nn.Linear(hidden_size, hidden_size)
self.v_proj = nn.Linear(hidden_size, hidden_size)
self.o_proj = nn.Linear(hidden_size, hidden_size)
# RoPE
self.rotary_emb = RotaryEmbedding(
dim=self.head_dim,
max_seq_len=max_seq_len
)
def forward(self, hidden_states):
batch_size, seq_len, _ = hidden_states.shape
# Project to Q, K, V
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
# Reshape for multi-head
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
# Apply RoPE
cos, sin = self.rotary_emb(seq_len, device=hidden_states.device)
q, k = apply_rotary_pos_emb(q, k, cos, sin)
# Standard attention
attn_output = F.scaled_dot_product_attention(q, k, v)
# Reshape and project
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, seq_len, -1)
output = self.o_proj(attn_output)
return output
```
## Fine-tuning for Long Context
### Minimal Fine-tuning (Position Interpolation)
```python
from transformers import Trainer, TrainingArguments
# Extend model config
model.config.max_position_embeddings = 32768
model.config.rope_scaling = {"type": "linear", "factor": 16.0}
# Training args (minimal steps needed)
training_args = TrainingArguments(
output_dir="./llama-32k",
num_train_epochs=1,
max_steps=1000, # Only 1000 steps!
per_device_train_batch_size=1,
gradient_accumulation_steps=16,
learning_rate=2e-5,
warmup_steps=100,
logging_steps=10,
save_steps=500,
)
# Train on long documents
trainer = Trainer(
model=model,
args=training_args,
train_dataset=long_document_dataset, # 32k token sequences
)
trainer.train()
```
### YaRN Fine-tuning
```bash
# Clone YaRN implementation
git clone https://github.com/jquesnelle/yarn
cd yarn
# Fine-tune LLaMA with YaRN
python scripts/train.py \
--model meta-llama/Llama-2-7b-hf \
--scale 16 \
--rope_theta 10000 \
--max_length 32768 \
--batch_size 1 \
--gradient_accumulation 16 \
--steps 400 \
--learning_rate 2e-5
```
## Best Practices
### 1. Choose the Right Method
```python
# For NEW models (training from scratch)
use_method = "ALiBi" # Best extrapolation, lowest memory
# For EXTENDING existing RoPE models
use_method = "YaRN" # Most efficient extension (10× less data)
# For QUICK extension with minimal compute
use_method = "Position Interpolation" # 1000 steps
# For MODERATE extension with good efficiency
use_method = "Linear RoPE Scaling" # Built-in, simple
```
### 2. Scaling Factor Selection
```python
# Conservative (safer, better quality)
scaling_factor = 2.0 # 8k → 16k
# Moderate (good balance)
scaling_factor = 4.0 # 8k → 32k
# Aggressive (requires more fine-tuning)
scaling_factor = 8.0 # 8k → 64k
scaling_factor = 16.0 # 8k → 128k
# Rule: Larger factors need more fine-tuning steps
steps_needed = 100 * scaling_factor # Rough estimate
```
### 3. Fine-tuning Data
```python
# ✅ Good: Long documents matching target length
train_data = [
{"text": long_doc_32k_tokens}, # Full 32k
{"text": long_doc_24k_tokens}, # Varied lengths
{"text": long_doc_16k_tokens},
]
# ❌ Bad: Short documents (won't learn long context)
train_data = [
{"text": short_doc_2k_tokens},
]
# Use datasets like:
# - PG-19 (books, long texts)
# - arXiv papers
# - Long-form conversations
# - GitHub repositories (concatenated files)
```
### 4. Avoid Common Pitfalls
```python
# ❌ Bad: Applying position interpolation without fine-tuning
model.config.rope_scaling = {"type": "linear", "factor": 16.0}
# Model will perform poorly without fine-tuning!
# ✅ Good: Fine-tune after scaling
model.config.rope_scaling = {"type": "linear", "factor": 16.0}
fine_tune(model, long_documents, steps=1000)
# ❌ Bad: Too aggressive scaling without data
scale_to_1M_tokens() # Won't work without massive fine-tuning
# ✅ Good: Incremental scaling
# 8k → 16k → 32k → 64k (fine-tune at each step)
```
## Production Deployment
### Inference with Long Context
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load long-context model
model = AutoModelForCausalLM.from_pretrained(
"togethercomputer/LLaMA-2-7B-32K", # 32k context
torch_dtype=torch.float16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/LLaMA-2-7B-32K")
# Process long document
long_text = "..." * 30000 # 30k tokens
inputs = tokenizer(long_text, return_tensors="pt", truncation=False).to('cuda')
# Generate
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
```
### Memory Optimization
```python
# Use gradient checkpointing for fine-tuning
model.gradient_checkpointing_enable()
# Use Flash Attention 2
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
attn_implementation="flash_attention_2", # 2-3× faster
torch_dtype=torch.float16
)
# Use paged attention (vLLM)
from vllm import LLM
llm = LLM(
model="togethercomputer/LLaMA-2-7B-32K",
max_model_len=32768, # 32k context
gpu_memory_utilization=0.9
)
```
## Resources
- **RoPE Paper**: https://arxiv.org/abs/2104.09864 (RoFormer)
- **YaRN Paper**: https://arxiv.org/abs/2309.00071
- **ALiBi Paper**: https://arxiv.org/abs/2108.12409 (Train Short, Test Long)
- **Position Interpolation**: https://arxiv.org/abs/2306.15595
- **HuggingFace RoPE Utils**: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_rope_utils.py
- **YaRN Implementation**: https://github.com/jquesnelle/yarn
- **Together AI Blog**: https://www.together.ai/blog/llama-2-7b-32k
## See Also
- `references/rope.md` - Detailed RoPE implementation and theory
- `references/extension_methods.md` - YaRN, ALiBi, Position Interpolation comparisons
- `references/fine_tuning.md` - Complete fine-tuning guide for context extension
Name Size