autogpt-agents by davila7
Autonomous AI agent platform for building and deploying continuous agents. Use when creating visual workflow agents, deploying persistent autonomous agents, or building complex multi-step AI automation systems.
Coding
15.7K Stars
1.4K Forks
Updated Jan 12, 2026, 05:31 AM
Why Use This
This skill provides specialized capabilities for davila7's codebase.
Use Cases
- Developing new features in the davila7 repository
- Refactoring existing code to follow davila7 standards
- Understanding and working with davila7's codebase structure
Skill Snapshot
Auto scan of skill assets. Informational only.
Valid SKILL.md
Checks against SKILL.md specification
Source & Community
Repository claude-code-templates
Skill Version
main
Community
15.7K 1.4K
Updated At Jan 12, 2026, 05:31 AM
Skill Stats
SKILL.md 404 Lines
Total Files 1
Total Size 0 B
License MIT
---
name: autogpt-agents
description: Autonomous AI agent platform for building and deploying continuous agents. Use when creating visual workflow agents, deploying persistent autonomous agents, or building complex multi-step AI automation systems.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Agents, AutoGPT, Autonomous Agents, Workflow Automation, Visual Builder, AI Platform]
dependencies: [autogpt-platform>=0.4.0]
---
# AutoGPT - Autonomous AI Agent Platform
Comprehensive platform for building, deploying, and managing continuous AI agents through a visual interface or development toolkit.
## When to use AutoGPT
**Use AutoGPT when:**
- Building autonomous agents that run continuously
- Creating visual workflow-based AI agents
- Deploying agents with external triggers (webhooks, schedules)
- Building complex multi-step automation pipelines
- Need a no-code/low-code agent builder
**Key features:**
- **Visual Agent Builder**: Drag-and-drop node-based workflow editor
- **Continuous Execution**: Agents run persistently with triggers
- **Marketplace**: Pre-built agents and blocks to share/reuse
- **Block System**: Modular components for LLM, tools, integrations
- **Forge Toolkit**: Developer tools for custom agent creation
- **Benchmark System**: Standardized agent performance testing
**Use alternatives instead:**
- **LangChain/LlamaIndex**: If you need more control over agent logic
- **CrewAI**: For role-based multi-agent collaboration
- **OpenAI Assistants**: For simple hosted agent deployments
- **Semantic Kernel**: For Microsoft ecosystem integration
## Quick start
### Installation (Docker)
```bash
# Clone repository
git clone https://github.com/Significant-Gravitas/AutoGPT.git
cd AutoGPT/autogpt_platform
# Copy environment file
cp .env.example .env
# Start backend services
docker compose up -d --build
# Start frontend (in separate terminal)
cd frontend
cp .env.example .env
npm install
npm run dev
```
### Access the platform
- **Frontend UI**: http://localhost:3000
- **Backend API**: http://localhost:8006/api
- **WebSocket**: ws://localhost:8001/ws
## Architecture overview
AutoGPT has two main systems:
### AutoGPT Platform (Production)
- Visual agent builder with React frontend
- FastAPI backend with execution engine
- PostgreSQL + Redis + RabbitMQ infrastructure
### AutoGPT Classic (Development)
- **Forge**: Agent development toolkit
- **Benchmark**: Performance testing framework
- **CLI**: Command-line interface for development
## Core concepts
### Graphs and nodes
Agents are represented as **graphs** containing **nodes** connected by **links**:
```
Graph (Agent)
├── Node (Input)
│ └── Block (AgentInputBlock)
├── Node (Process)
│ └── Block (LLMBlock)
├── Node (Decision)
│ └── Block (SmartDecisionMaker)
└── Node (Output)
└── Block (AgentOutputBlock)
```
### Blocks
Blocks are reusable functional components:
| Block Type | Purpose |
|------------|---------|
| `INPUT` | Agent entry points |
| `OUTPUT` | Agent outputs |
| `AI` | LLM calls, text generation |
| `WEBHOOK` | External triggers |
| `STANDARD` | General operations |
| `AGENT` | Nested agent execution |
### Execution flow
```
User/Trigger → Graph Execution → Node Execution → Block.execute()
↓ ↓ ↓
Inputs Queue System Output Yields
```
## Building agents
### Using the visual builder
1. **Open Agent Builder** at http://localhost:3000
2. **Add blocks** from the BlocksControl panel
3. **Connect nodes** by dragging between handles
4. **Configure inputs** in each node
5. **Run agent** using PrimaryActionBar
### Available blocks
**AI Blocks:**
- `AITextGeneratorBlock` - Generate text with LLMs
- `AIConversationBlock` - Multi-turn conversations
- `SmartDecisionMakerBlock` - Conditional logic
**Integration Blocks:**
- GitHub, Google, Discord, Notion connectors
- Webhook triggers and handlers
- HTTP request blocks
**Control Blocks:**
- Input/Output blocks
- Branching and decision nodes
- Loop and iteration blocks
## Agent execution
### Trigger types
**Manual execution:**
```http
POST /api/v1/graphs/{graph_id}/execute
Content-Type: application/json
{
"inputs": {
"input_name": "value"
}
}
```
**Webhook trigger:**
```http
POST /api/v1/webhooks/{webhook_id}
Content-Type: application/json
{
"data": "webhook payload"
}
```
**Scheduled execution:**
```json
{
"schedule": "0 */2 * * *",
"graph_id": "graph-uuid",
"inputs": {}
}
```
### Monitoring execution
**WebSocket updates:**
```javascript
const ws = new WebSocket('ws://localhost:8001/ws');
ws.onmessage = (event) => {
const update = JSON.parse(event.data);
console.log(`Node ${update.node_id}: ${update.status}`);
};
```
**REST API polling:**
```http
GET /api/v1/executions/{execution_id}
```
## Using Forge (Development)
### Create custom agent
```bash
# Setup forge environment
cd classic
./run setup
# Create new agent from template
./run forge create my-agent
# Start agent server
./run forge start my-agent
```
### Agent structure
```
my-agent/
├── agent.py # Main agent logic
├── abilities/ # Custom abilities
│ ├── __init__.py
│ └── custom.py
├── prompts/ # Prompt templates
└── config.yaml # Agent configuration
```
### Implement custom ability
```python
from forge import Ability, ability
@ability(
name="custom_search",
description="Search for information",
parameters={
"query": {"type": "string", "description": "Search query"}
}
)
def custom_search(query: str) -> str:
"""Custom search ability."""
# Implement search logic
result = perform_search(query)
return result
```
## Benchmarking agents
### Run benchmarks
```bash
# Run all benchmarks
./run benchmark
# Run specific category
./run benchmark --category coding
# Run with specific agent
./run benchmark --agent my-agent
```
### Benchmark categories
- **Coding**: Code generation and debugging
- **Retrieval**: Information finding
- **Web**: Web browsing and interaction
- **Writing**: Text generation tasks
### VCR cassettes
Benchmarks use recorded HTTP responses for reproducibility:
```bash
# Record new cassettes
./run benchmark --record
# Run with existing cassettes
./run benchmark --playback
```
## Integrations
### Adding credentials
1. Navigate to Profile > Integrations
2. Select provider (OpenAI, GitHub, Google, etc.)
3. Enter API keys or authorize OAuth
4. Credentials are encrypted and stored securely
### Using credentials in blocks
Blocks automatically access user credentials:
```python
class MyLLMBlock(Block):
def execute(self, inputs):
# Credentials are injected by the system
credentials = self.get_credentials("openai")
client = OpenAI(api_key=credentials.api_key)
# ...
```
### Supported providers
| Provider | Auth Type | Use Cases |
|----------|-----------|-----------|
| OpenAI | API Key | LLM, embeddings |
| Anthropic | API Key | Claude models |
| GitHub | OAuth | Code, repos |
| Google | OAuth | Drive, Gmail, Calendar |
| Discord | Bot Token | Messaging |
| Notion | OAuth | Documents |
## Deployment
### Docker production setup
```yaml
# docker-compose.prod.yml
services:
rest_server:
image: autogpt/platform-backend
environment:
- DATABASE_URL=postgresql://...
- REDIS_URL=redis://redis:6379
ports:
- "8006:8006"
executor:
image: autogpt/platform-backend
command: poetry run executor
frontend:
image: autogpt/platform-frontend
ports:
- "3000:3000"
```
### Environment variables
| Variable | Purpose |
|----------|---------|
| `DATABASE_URL` | PostgreSQL connection |
| `REDIS_URL` | Redis connection |
| `RABBITMQ_URL` | RabbitMQ connection |
| `ENCRYPTION_KEY` | Credential encryption |
| `SUPABASE_URL` | Authentication |
### Generate encryption key
```bash
cd autogpt_platform/backend
poetry run cli gen-encrypt-key
```
## Best practices
1. **Start simple**: Begin with 3-5 node agents
2. **Test incrementally**: Run and test after each change
3. **Use webhooks**: External triggers for event-driven agents
4. **Monitor costs**: Track LLM API usage via credits system
5. **Version agents**: Save working versions before changes
6. **Benchmark**: Use agbenchmark to validate agent quality
## Common issues
**Services not starting:**
```bash
# Check container status
docker compose ps
# View logs
docker compose logs rest_server
# Restart services
docker compose restart
```
**Database connection issues:**
```bash
# Run migrations
cd backend
poetry run prisma migrate deploy
```
**Agent execution stuck:**
```bash
# Check RabbitMQ queue
# Visit http://localhost:15672 (guest/guest)
# Clear stuck executions
docker compose restart executor
```
## References
- **[Advanced Usage](references/advanced-usage.md)** - Custom blocks, deployment, scaling
- **[Troubleshooting](references/troubleshooting.md)** - Common issues, debugging
## Resources
- **Documentation**: https://docs.agpt.co
- **Repository**: https://github.com/Significant-Gravitas/AutoGPT
- **Discord**: https://discord.gg/autogpt
- **License**: MIT (Classic) / Polyform Shield (Platform)
Name Size